# R script for lecture 10 in STK4900/9900 # Slide 7: Pairwise comparison - Fecal fat ------------------------------------- fecfat <- read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/fecfat.txt", header=T) x <- fecfat$fecfat[fecfat$pilltype==1] y <- fecfat$fecfat[fecfat$pilltype==2] t.test(x,y,paired=T) # Slide 8: Pairwise comparison - Birth weight ---------------------------------- babies <- read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/gababies.txt",header=T) first <- babies$bweight[babies$birthord==1] fifth <- babies$bweight[babies$birthord==5] diff <- fifth-first t.test(diff) t.test(fifth,first,paired=T) # Slide 9: Fixed effects models ------------------------------------------------ fit <- lm(fecfat~factor(pilltype)+factor(subject),data=fecfat) anova(fit) fit <- lm(bweight~factor(birthord)+factor(momid),data=babies) anova(fit) # Slide 11: Random effects model - Fecal fat ----------------------------------- library(nlme) fit.fecfat <- lme(fecfat~factor(pilltype), random=~1|subject, data=fecfat) summary(fit.fecfat) # Slide 14: Random effects model - Birth weight -------------------------------- fit.babies <- lme(bweight~birthord+initage, random=~1|momid, data=babies) summary(fit.babies) # Slide 20: GEE - logistic model ----------------------------------------------- geefit <- gee(lowbrth~birthord+initage,id=momid,family=binomial,data=babies,corstr="unstructured") summary(geefit) or.ci(geefit) # Slide 28: Time series ----------------------------------------------- par(mfrow=c(2,2)) time <- seq(1,100,1) a <- c(0.1, 0.5, 0.9,-0.9) for(i in 1:4){ y_t <- arima.sim(n=100,model=list(ar=a[i]),sd=1) plot(time, y_t, type="l", main=a[i]) } y_t <- arima.sim(n=100,model=list(ar=a[2]),sd=1) arima(y_t, order=c(1,0,0))