# R script for lecture 8 in STK4900/9900 # Slide 13-14: Kaplan-Meier estimator ------------------------------------------ library(survival) time <- c(2,6,12,54,56,68,89,96,96,125,128,131,140,141,143,145,146,148,162,168,173,181) cens <- c(1,1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0) fit.surv <- survfit(Surv(time,cens)~1) summary(fit.surv) plot(fit.surv, conf.int=FALSE, mark.time=TRUE) # Slide 16: Kaplan-Meier estimator --------------------------------------------- fit.surv <- survfit(Surv(time,cens)~1, conf.type="plain") plot(fit.surv, conf.int=TRUE, mark.time=TRUE) # Slide 18: Kaplan-Meier estimator --------------------------------------------- print(fit.surv) # Slide 20-21: Comparing two groups -------------------------------------------- time <- c(2,3,4,7,10,22,28,29,32,37,40,41,54,61,63,71,127,140,146,158,167,182,2, 6,12,54,56,68,89,96,96,125,128,131,140,141,143,145,146,148,162,168,173,181) cens <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0, 1,1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0) group <- c(rep(1,22),rep(2,22)) fit.surv.both <- survfit(Surv(time,cens)~group, conf.type="plain") plot(fit.surv.both, lty=1:2, xlab="Time (months)", ylab="Survival", mark.time=TRUE) legend(5,0.2,c("control","treatment"),lty=1:2) print(fit.surv.both) # Slide 25: Comparing two groups (cont) ------------------------------------- survdiff(Surv(time,cens)~group) # Slide 33-35: Cox regression -------------------------------------------- melanom <- read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/melanoma.dat", header=TRUE) fit.cox <- coxph(Surv(lifetime,status==1)~factor(sex)+thickn, data=melanom) summary(fit.cox) fit.cox.sex <- coxph(Surv(lifetime,status==1)~factor(sex), data=melanom) anova(fit.cox.sex,fit.cox,test="Chisq")